
MATRIXx TM

SystemBuildTM FuzzyLogic Block
User Guide

SystemBuild FuzzyLogic Block User Guide

April 2004 Edition
Part Number 370763B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2000–2004 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
MATRIXx™, National Instruments™, NI™, ni.com™, SystemBuild™, and Xmath™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation v SystemBuild FuzzyLogic Block User Guide

Contents

Chapter 1
Introduction

Chapter 2
Fuzzy Logic Fundamentals

Preliminary Example ...2-1
When Fuzzy Logic is Appropriate...2-2
Methods and Design Issues..2-2

Crisp Data and Fuzzification ...2-4
Qualifiers...2-5
Fuzzy Data ..2-7

Connective Methods..2-7
Implication Methods..2-8
Defuzzification Methods ...2-9
Aggregation Method..2-10
Overview and Additional Design Issues ...2-11

Speed versus Memory Preferences ...2-12
Parallelism...2-13

Chapter 3
FuzzyLogic Block

Using the Parameters Tab ..3-1
Using the Code Tab ...3-3

Declaring Inputs and Outputs..3-4
Defining Global Membership Classes...3-4
Using Equations to Create Membership Functions ...3-5
Using Vectors in Membership Functions ..3-9
Defining Qualifiers..3-11
Creating and Editing Data Definitions ..3-12

Crisp Data Declaration..3-12
Fuzzy Data Declaration...3-13

Creating Fuzzy Rule Definitions ...3-13
Linking User-Defined Methods ...3-14
Using the FuzzyLogic Tool ...3-15

Using the General Tab...3-16
Using the Classes and Qualifiers Tab..3-16
Using the Data Tab..3-17
Using the Rules Tab ..3-18

Contents

SystemBuild FuzzyLogic Block User Guide vi ni.com

Chapter 4
FuzzyLogic Block Example

Introducing the Model ... 4-1
Generating the Rules ... 4-3
Creating Membership Functions ... 4-4
Running the Simulation... 4-5
Comparing Times to Run the Simulation.. 4-6

Appendix A
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 SystemBuild FuzzyLogic Block User Guide

1
Introduction

The SystemBuild FuzzyLogic block provides a method for employing a
fuzzy logic control methodology within SystemBuild for simulation and/or
code generation. The FuzzyLogic block allows users to implement fuzzy
logic decision structures of arbitrary complexity within a standardized
block-diagram control-logic structure. The FuzzyLogic block conforms to
all the conventions of SystemBuild as concerns timing, interconnection
with other blocks, simulation, and code generation.

SystemBuild is a part of the MATRIXx family, and the FuzzyLogic block
is part of SystemBuild. However, you must have a FuzzyLogic license to
use this block. To determine whether you do, type LICENSEINFO in the
Xmath Commands window, and look for the line RT/Fuzzy Module.

This guide includes four chapters. The contents of each are as follows:

• Chapter 1, Introduction, introduces the concepts of fuzzy logic.

• Chapter 2, Fuzzy Logic Fundamentals, spells out the details of the
SystemBuild implementation of the fuzzy logic system, including the
equations used. Even if you are familiar with the concepts of fuzzy
logic, you may wish to review the mathematical definitions in this
chapter.

• Chapter 3, FuzzyLogic Block, explains the FuzzyLogic block
parameters and how to use them.

• Chapter 4, FuzzyLogic Block Example, is a tutorial that demonstrates
the FuzzyLogic block.

For the details on the FuzzyLogic Block Dialog, refer to the MATRIXx Help
and the SystemBuild User Guide.

© National Instruments Corporation 2-1 SystemBuild FuzzyLogic Block User Guide

2
Fuzzy Logic Fundamentals

The central idea of fuzzy logic is mathematical understanding of
English-like statements that express potentially quantifiable actions in
qualitative, natural language.

In this chapter, we present an example and then explore the concepts of
fuzzy logic in light of this example.

Preliminary Example
Imagine a vertically standing pole, weighted at one end and attached to a
movable base at the other end. The movement of the pole is constrained to
a two-dimensional plane; it may fall in one of two directions, measured by
an offset angle and angular delta. The pendulum can be kept in the vertical
position by moving the base in the same direction the pendulum is falling.
This system is the classic two-dimensional inverted pendulum problem
shown in Figure 2-1.

Figure 2-1. Inverted Pendulum Problem

Suppose you are given the task to design a controller that keeps the
pendulum in the vertical position. One possible approach uses precise
mathematical formulas for calculating the correct response of the
controller. These mathematical formulas would be designed to represent
an accurate model of the system dynamics. If the system has complex
behavior, the formulas might be numerous and complex.

Angle

Force

Chapter 2 Fuzzy Logic Fundamentals

SystemBuild FuzzyLogic Block User Guide 2-2 ni.com

A second possible approach uses logical statements to control the position
of the pendulum. The control logic is in the form of IF/THEN rules that
model the input/output relationships of the system.

Fuzzy logic uses the second approach. It attempts to extend the traditional
logic by evaluating statements that do not have clear TRUE/FALSE
answers. For example,

IF angle is large THEN force is high

How exactly are large and high interpreted? Their definitions are not exact
and crisp; rather they are fuzzy and uncertain. Fuzzy logic attempts to
quantify fuzzy or vague terms, such as large and high, and incorporate
them in a decision-making process.

When Fuzzy Logic is Appropriate
In general, a fuzzy logic approach is suitable if:

• The model of the process is very complex. The mathematical formulas
are either not available or too complex for the target environment.

• Relationships between inputs and outputs are well understood and can
be described in English-like statements.

• A conservative control strategy is desired.

Methods and Design Issues
Consider statements of the form:

angle is large

Each statement has an observable real-world variable, such as delta, angle,
or temperature. On the right side is a qualitative descriptor of the variable,
such as large, fast, slow, hot, or cold. Fuzzy logic attempts to assign degrees
of membership—that is, the quantitative degree to which a datum belongs
to a given set—or degrees of truth to each statement through the process of
fuzzification. large may be completely TRUE (angle is 30°), completely
FALSE (0°), or partially TRUE (20°).

Once a theory is developed to understand angle is large, these
statements are inserted into IF/THEN statements that may be merged with
AND and OR connections to form fuzzy IF/THEN rules. For example,
suppose you must design a new pendulum-balancing system taking into

Chapter 2 Fuzzy Logic Fundamentals

© National Instruments Corporation 2-3 SystemBuild FuzzyLogic Block User Guide

consideration two inputs, delta and angle, and creating an output force.
Some rules might be:

Rule #1
IF (delta is fast_positive) AND (angle is large_positive)

THEN (force is high_positive)

Rule #2
IF (delta is slow_positive) AND (angle is large_negative)

THEN (force is medium_negative)

Rule #3
IF (delta is slow_positive) AND (angle is small_negative)

THEN (force is zero)

If we set up rules in this fashion, we introduce certain problems. Each is a
problem that has no definitive solution for every possible situation, and
poses a design issue in each fuzzy control system.

• What is the meaning of AND? Since (delta is high) and (angle is
large) can both be partly TRUE, how are two partial truths combined
using AND (and OR)? Clearly the traditional binary interpretation of
AND and OR must be revised. In fuzzy logic, different ways of defining
AND and OR are grouped under the category of connective methods.

• The choice of connective methods leads to evaluating the IF statement
to a single value representing some partial degree of truth. How is the
assertion (THEN statement) affected by this value? Under what range of
values does the assertion execute? When the assertion executes, how
does the degree of truth from the IF statement affect it? In fuzzy logic,
this problem is called implication.

• The next step is to calculate a single value for the output variable
force based on the statement force is high and the results of
implication. This process is called defuzzification. For fuzzification,
the known variables are the inputs, and a degree of membership is
calculated. Here in defuzzification, a degree of membership value is
known from implication, and a crisp output value for force is
calculated. Defuzzification determines how an implicated fuzzy
membership curve is converted to a crisp output value.

• For each rule, a value of force is calculated. How are these values
combined into a single output? Are all rules equally important, or
should some rules be given more weight than others in the final

Chapter 2 Fuzzy Logic Fundamentals

SystemBuild FuzzyLogic Block User Guide 2-4 ni.com

decision? In fuzzy logic, these issues are treated under the topic of
aggregation.

Crisp Data and Fuzzification
A crisp datum is any real-world variable such as temperature, angle, or
speed. Crisp data must have a defined range of possible values. Associated
with each crisp datum is a set of linguistic variables, such as hot, cold, slow
or fast, that are at least partially TRUE in the range of the crisp data. For
example, the crisp datum angle, defined in the 0 to 45° range, has three
linguistic variables: small, medium, and large. Small is TRUE or partly
TRUE below 15°, large is TRUE or partly TRUE in the 20 to 45° range,
and medium is partially TRUE in the 10 to 30° range.

A membership function mathematically represents the meaning of the
linguistic variable in the domain of the crisp datum. Figure 2-2 displays the
membership functions for small, medium, and large. The x-axis range of
the graph is defined by the possible values of the crisp datum angle. The
y-value represents the degree of membership or degree of truth for the
linguistic variable at each value of the crisp datum. The degree of
membership may be 0 (45° is small?), 1 (45° is large?), or somewhere
between 0 and 1 (30° is large).

Figure 2-2. Membership Function for Datum Angle

The membership functions may overlap. Therefore, there can be a non-zero
degree of membership in more than one variable (25° is both medium and
large to some degree).

small large

10˚ 15˚ 20˚

angle

25 ˚ 30˚

medium

Chapter 2 Fuzzy Logic Fundamentals

© National Instruments Corporation 2-5 SystemBuild FuzzyLogic Block User Guide

As mentioned in the introduction, Fuzzy logic attempts to understand
(by quantifying) English-like statements of the crisp datum is linguistic
variable form. For example:

angle is low

angle is medium

angle is high

Each statement is an example of a fuzzy conditional. Fuzzy conditionals are
evaluated by the process of fuzzification. Fuzzification simply locates the
degree of membership value associated with an input crisp datum value,
shown in Figure 2-3. If a crisp value falls between two points in the
membership function, linear interpolation is used to find the intermediate
value.

Figure 2-3. Fuzzification of Angle is Medium

Consequently, the total number of points that define the membership curve
is another critical design parameter. The placement and shape of
membership functions is a crucial design issue in fuzzy controller design.

Qualifiers
Qualifiers extend the English-like statements that are understood by fuzzy
logic by introducing linguistic hedges:

angle is very large

angle is not steep

where very and not are qualifiers.

angle

medium

Chapter 2 Fuzzy Logic Fundamentals

SystemBuild FuzzyLogic Block User Guide 2-6 ni.com

Mathematically, a qualifier reshapes the membership curve into a new
curve. Some sample qualifier definitions are as follows.

very x**2;

somewhat sqrt(x);

not 1 - x;

What effect does a qualifier have on fuzzification? As Figure 2-4 shows, a
new membership function based on the qualifiers is created; then the fuzzy
conditional is evaluated.

Figure 2-4. Membership Function with Qualifiers Including NOT

Let’s evaluate three fuzzy conditional statement fragments:

angle is large

angle is very large

angle is not very large

Using crisp datum angle and the class definition:

large x;

and the qualifiers:

very x**2;

not 1 - x;

18×

0.84

0.40

0.16

large

very large

not very large

Angle (degrees)

Chapter 2 Fuzzy Logic Fundamentals

© National Instruments Corporation 2-7 SystemBuild FuzzyLogic Block User Guide

• Angle is large—This conditional represents the standard
conditional statement described in the MATRIXx Help. The crisp
datum value is evaluated in the large membership curve. If the crisp
datum value angle is 18°, the conditional statement evaluates to 0.4.

• Angle is very large—Instead of evaluating the crisp datum with
the membership curve large, the datum is evaluated against a new
membership curve very large, which would be the square of the
membership curve large. If the crisp datum value angle is 18°, this
conditional statement evaluates to 0.16.

• Angle is not very large—A new membership curve not very
large is calculated first by squaring each value of the membership
function large and then subtracting each value from 1.0. If the crisp
datum value angle is 18°, this conditional statement evaluates to 0.84.

Fuzzy Data
Suppose, instead of starting with crisp data input to the system, the input is
an actual degree of membership. In other words, a rule might look like:

if (delta is fast) and leaning

then force is high

leaning is a fuzzy data variable which contains a degree of membership
value between 0 and 1.

Connective Methods
The connective process describes the way in which AND and OR are handled
in the process of combining conditionals in the IF statement. The options
are MAX-MIN, BAYESIAN, or user-defined, as shown in Table 2-1.

Typically, the MAX-MIN definition is used. A user-defined connective
method also may be created and incorporated into the FuzzyLogic block
Refer to the Linking User-Defined Methods section of Chapter 3,
FuzzyLogic Block, for more information.

Table 2-1. MAX-MIN versus Bayesian Connective Methods

Method Max-Min Bayesian

AND MIN(X,Y) X * Y

OR MAX(X,Y) X + Y – (X * Y)

Chapter 2 Fuzzy Logic Fundamentals

SystemBuild FuzzyLogic Block User Guide 2-8 ni.com

Implication Methods
Implication describes how the membership curves of an output crisp datum
is affected by the degree of membership value obtained in the rule IF
condition. Two methods, Mamdani and Larsen, are typically used for
control problems. The functionalities are shown in Table 2-2, where
c represents the degree of membership in the IF condition and y(x)
represents a class membership curve in the assertion.

The methods are easier to see graphically, as shown in Figure 2-5. Since
both methods work on each point of the membership curve, the final shape
of the implicated curve may change depending on how many points
constitute the curve. The shape of the curve may result in a different
defuzzified value.

Figure 2-5. Implication Example

A user-defined implication method also may be created and incorporated
into the FuzzyLogic block. Refer to the MATRIXx Help for more
information.

Table 2-2. Mamdani versus Larsen Implication Methods

Method Crisp Data Fuzzy Data

Mamdani Min(c, y(x)) c

Larsen c * y(x) c

Rule Strength

Mamdani Larsen

Chapter 2 Fuzzy Logic Fundamentals

© National Instruments Corporation 2-9 SystemBuild FuzzyLogic Block User Guide

Defuzzification Methods
In the assertion part of the rule, defuzzification evaluates fuzzy conditional
statements such as:

force is high;

where force is the crisp output and high is a linguistic variable.
Defuzzification determines how an implicated fuzzy membership curve
is converted to a crisp output value.

Two standard processes exist for defuzzification: the center of area
(centroid) and means of maximum (mom).

The center of area (referred to in the FuzzyLogic Dialog as centroid)
method divides the curve into two sub-parts (with respect to the abscissa)
such that the area under the first part is equal to that under the second part.
The x-value that defines this dividing line is returned as the defuzzified
result.

The means of maximum simply takes the x-axis average of all points whose
ordinate is the curve maximum.

As an example, consider the implicated membership curve for LOW shown
in Figure 2-5. For this example,

Center of Area = 5.75

Means of Maximum = (4 + 5 + ... + 9)/6 = 6.5

Figure 2-6. Defuzzification Example

A user-defined defuzzification method also may be created and
incorporated into the FuzzyLogic block. For more details, refer to the
Linking User-Defined Methods section of Chapter 3, FuzzyLogic Block.

0.4

0.2

2.0 4.0 Temperature 9.0 10

Chapter 2 Fuzzy Logic Fundamentals

SystemBuild FuzzyLogic Block User Guide 2-10 ni.com

Aggregation Method
Each crisp datum variable may appear in the assertion of more than one
rule. For example, our pendulum example in the Methods and Design
Issues section shows force in all three rules.

Each rule assigns a defuzzified value to the crisp datum force. The
aggregation method determines the final crisp value from all the rule
results. From each rule, two items are used in the aggregation method:
the modified rule weight and the defuzzified crisp value.

In the FuzzyLogic block, the modified rule weight is the product of the rule
WEIGHT term (defined in the rule definition) and a term proportional to the
area of the implicated curve used to calculate the defuzzified crisp value.
The exact equation is:

(2-1)

Most aggregation methods incorporate some form of generalized means to
provide the final value. The FuzzyLogic block provides arithmetic,
geometric, and harmonic means.

(2-2)

(2-3)

(2-4)

where value is the defuzzified crisp value and weight represents the
modified rule WEIGHT. A user-defined aggregation method also may be

area

0.5 y0 yN+()× yk
k 1=

N 1–

∑+

N 1–
--=

harmonic
weight∑

weight() value()⁄∑
--=

arithmetic
weight value×∑

weight∑
--=

geometric exp
weight value()log×∑

weight∑

=

Chapter 2 Fuzzy Logic Fundamentals

© National Instruments Corporation 2-11 SystemBuild FuzzyLogic Block User Guide

created and incorporated into the FuzzyLogic block. Refer to the Linking
User-Defined Methods section of Chapter 3, FuzzyLogic Block, for details.

Overview and Additional Design Issues
Figure 2-7 shows a flow chart of the three pendulum control rules shown in
the Methods and Design Issues section.

Figure 2-7. Pendulum Example Fuzzy Rules

Connection

Implication

Defuzzification

Aggregation

Force

Angle Delta

Rule #1

PS NS

Rule #2

ZR ZR

Rule #3

PS PS

Connection

Implication

Defuzzification

Angle Delta

Connection

Implication

Defuzzification

Angle Delta

Fuzzification Fuzzification Fuzzification Fuzzification FuzzificationFuzzification

Chapter 2 Fuzzy Logic Fundamentals

SystemBuild FuzzyLogic Block User Guide 2-12 ni.com

The exact process of the FuzzyLogic block during a single simulation cycle
follows this flow of execution. For each rule:

1. All crisp inputs (angle and delta) are fuzzified with respect to
(qualified) class membership curves.

• All conjunctions and disjunctions are performed in the IF
conditions of the knowledge base.

• The implication process is performed for all crisp outputs with
respect to their class membership curves.

• Defuzzification takes place for all crisp outputs (force).

2. Aggregation takes multiple instances of an output (force) and
combines them into a single output, taking into account rule weights.

Speed versus Memory Preferences
Each rule requires many computations:

• First, all membership curves (including any qualifiers) needed for
fuzzification must be created from their equations.

• Having fuzzified and taken into account all conjunctions and
disjunctions, the process of implication is performed. It involves at
least n calculations, where n is the number of points in the curve.

• Finally, n more calculations must be performed to obtain the
defuzzified value. This must be done for each rule.

Two implementation strategies are available:

• If memory is critical—Limit memory storage to only the bare
information needed to create the curves. This strategy saves memory,
but processing times increase dramatically as each curve must be
regenerated whenever it is required.

• If speed is critical—Store the membership curves in memory. Also,
create a set of lookup tables for implication and defuzzification. This
decreases the time needed for computation while requiring more
memory.

The lookup tables are based on the membership curves used in fuzzification
and defuzzification. By using evenly-spaced points, only one lookup value
is needed regardless of the number of points involved. Furthermore, while
the answers are an interpolation, the answer usually has an accuracy of
0.1% for 25 points of a fairly smooth, nonlinear curve; for linear curves
with the proper breakpoints, the error is 0 when the Larsen technique
(refer to the Implication Methods section) is used for implication.

Chapter 2 Fuzzy Logic Fundamentals

© National Instruments Corporation 2-13 SystemBuild FuzzyLogic Block User Guide

Parallelism
As the flow chart in Figure 2-7 shows, all the rules are evaluated in parallel,
even if a single processor is used. Therefore, any data found in the IF
clause is considered to be an input, and must appear in the input list. For
more information, refer to the FuzzyLogic block topic in the MATRIXx
Help. Likewise, any data found in the assertion (THEN clause) must be
listed as an output (refer to the Declaring Inputs and Outputs section of
Chapter 3, FuzzyLogic Block). Since data may be either an input or an
output but not both, no data name can appear in both the IF clause and the
THEN clause in the same or different rules of a single FuzzyLogic block.

© National Instruments Corporation 3-1 SystemBuild FuzzyLogic Block User Guide

3
FuzzyLogic Block

The FuzzyLogic block supplies algorithms to support the design of fuzzy
logic controllers based on rules you write.

To use the FuzzyLogic block, complete the following steps.

1. Open a discrete SuperBlock in the SuperBlock Editor.

2. Open the Palette Browser, and select the Artificial Intelligence
palette.

3. Drag the FuzzyLogic block onto your diagram.

4. Position your cursor over the FuzzyLogic block, and press the
<Return> key.

The FuzzyLogic Block Dialog appears.

This chapter describes how to use the FuzzyLogic Block Dialog:

• Using the Parameters Tab

• Using the Code Tab

For additional help on the FuzzyLogic block fields and parameters,
refer to the MATRIXx Help.

• Linking User-Defined Methods

• Using the FuzzyLogic Tool

This tool provides an alternative way to define block parameters and
also provides the ability to plot class information.

Using the Parameters Tab
The Parameter tab fields are as follows.

• Connective Method—Selects a connection method. Refer to the
Connective Methods section of Chapter 2, Fuzzy Logic Fundamentals,
for options. Refer to the Linking User-Defined Methods section for
instructions on linking your own method.

• Implication Method—Selects an implication method. Refer to the
Implication Methods section of Chapter 2, Fuzzy Logic Fundamentals,

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-2 ni.com

for options. Refer to the Linking User-Defined Methods section for
instructions on linking your own method.

• Defuzzification Method—Selects a defuzzification method. Refer to
the Defuzzification Methods section of Chapter 2, Fuzzy Logic
Fundamentals, for options. Refer to the Linking User-Defined
Methods section for instructions on linking your own method.

• Aggregation Method—Selects an aggregation method. Refer to the
Aggregation Method section of Chapter 2, Fuzzy Logic Fundamentals,
for options. Refer to the Linking User-Defined Methods section for
instructions on linking your own method.

• Database Parameters—Specify a 1 × 6 vector of settings used to fine
tune your fuzzy control system. You can specify a vector, for example,
[0.001, 0, 0, 0, –1, 1], or enter the values into the Database Parameters
spreadsheet cell by cell.

In order, these values represent:

– Minimum aggregation level defines a threshold where a rule’s
IF condition must be above a certain degree of membership level
in order for the assertion part of the rule to be evaluated. Normally
this parameter takes a value between 0 and 0.5.

– Absolute truth; default is 0.

– Absolute falsity; default is 1.

– Value for undefined datum: a value to assign to an output datum
when no rules contribute to that output. The meaning of the
parameter is taken from a scale of 0 to 1 and then scaled to the
limits given by the range of the datum. The current default is
set to 0.

– Minimum range entry form. Specify the minimum range in
a curve.

– Maximum range entry form. Specify the maximum range in
a curve.

• Number Points—Specifies the number of points in each equation
derived membership curve. Refer to the Using Equations to Create
Membership Functions section.

• Optimization—Selects an optimization preference.

The Memory option stores the equations necessary to recreate all
curves rather than saving the points of each curve. Therefore, the
points on each curve must be recreated each time they are needed. This
slows down all processing in the block but saves memory.

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-3 SystemBuild FuzzyLogic Block User Guide

The Speed option stores all membership function curves and
eliminates additional computations by providing extremely fast lookup
tables for fuzzification and implication/defuzzification. Depending
on the complexity of equations involved, processing time may be
decreased by a factor of 100 over the Memory option at the expense
of larger memory requirements.

The Compromise option stores only the class membership curves.
This option still requires three costly computations—computation of
qualified curves, implication, and defuzzification.

• Input Lin Delta—Specifies a scale factor for linearization of a
FuzzyLogic block. Default is 0.001 times the range of the input data.
Typically this value is not critical unless the membership curves are
highly nonlinear.

Using the Code Tab
Use the Code tab to define the rule, data, class, qualifier, input, and output
information for the fuzzy block. The syntax for rules, data, classes,
qualifiers, inputs, and outputs is defined in the subsequent sections.
The information must be organized in the order specified below:

1. Inputs

2. Outputs

3. Global Membership Classes

4. Qualifier Definitions

5. Data Definitions

6. Rule Definitions

General syntax rules are as follows:

• Semicolons are required at the end of each rule, class, data, or qualifier
statement.

• Place an empty line between each definition on the Code tab.
A definition (a rule) cannot have blank lines.

Given a block with one input and one output, the default contents of the
Code tab are shown in Figure 3-1.

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-4 ni.com

Figure 3-1. Default Code Tab Contents

Declaring Inputs and Outputs
Input/output declarations only have two components—the index, indicated
by a number followed by a period, and the name. The declaration is closed
with a semicolon, as shown in Example 3-1.

Example 3-1 Fuzzy Input Declaration

1. Force;

2. Temperature;

Defining Global Membership Classes
The FuzzyLogic block defines a class as a linguistic variable and its
membership function.

Class definitions have two parts: the linguistic variable name and the
membership curve degree of membership (ordinate) values. The definition
must start with a name, and a space must separate the name from the
membership curve. Curves may be specified using equations or vectors.
Combinations of vectors and equations are not permitted. No abscissa

1. IN_A;

1. OUT_B;

LOW SIN(X);
HIGH COS(X);

VERY X^2;

DATA IN_A;
TYPE CRISP;
RANGE [0,1];
MEMBERS LOW GLOBAL;

DATA OUT_B;
TYPE CRISP;
RANGE [0,1];
MEMBERS LOW GLOBAL

HIGH GLOBAL;

RULE SAMPLE;
IF IN_A IS VERY LOW;
THEN OUT_B IS HIGH;
WEIGHT 1;

Input

Output

Classes

Qualifier

Data

Rule

Da

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-5 SystemBuild FuzzyLogic Block User Guide

(x-axis) values appear in class definitions because one class can be used by
different crisp data defined over different ranges. When a class is part of a
crisp datum definition, the membership curve points are automatically
spaced evenly over the defined range of the data.

Some examples of classes are provided in Example 3-2.

Example 3-2 Global Membership Classes

HIGH MAX(SIN(PI*(X-0.5)),0)**2;

HOT [0.0,0.1,0.2,0.3,0.4,0.5,0.2,0.1];

Using Equations to Create Membership Functions
To create membership functions using equations, complete the following
steps.

1. Create the equation definition. All equations must be expressed using
the variable X and must fit on a single line. Equations may be defined
using the elements shown in the following table.

Numeric Functions
nixe MOD(x)

storax
fracas SIGN(x)

MAX(x,...)*

ROUND(x)
ABS(x)

MIN(x,...)*

Unary Operator – (negation) — —

Binary Operators:
Add, Subtract
Multiply, Divide
Raise to a Power

+, –
*, /
^ or **

— —

Exponential Functions LOG(x) LOG10(x) EXP(x)

Trigonometric Functions SIN(x)
SEC(x)
ATAN2(x,y)

COS(x)
CSC(x)

TAN(x)
COT(x)

Inverse Trig Functions ASIN(x)
ASEC(x)

ACOS(x)
ACSC(x)

ATAN(x)
ACOT(x)

Hyperbolic Functions SINH(x)
SECH(x)

COSH(x)
CSCH(x)

TANH(x)
COTH(x)

* MIN/MAX accept up to nine arguments

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-6 ni.com

For this example, special functions for triangular and trapezoidal
membership curves are TRG(x,a,b,c) and QUAD(x,a,b,c,d),
respectively (refer to Figures 3-2 and 3-3).

Figure 3-2. Triangular Function TRG(x,a,b,c)

Figure 3-3. Trapezoidal Function QUAD(x,a,b,c,d)

2. Define the values of X, the input vector to the equations.

Three fields in the FuzzyLogic Block Dialog define the values for X:
Minimum Range, Maximum Range, and Number Points.
The minimum and maximum values are part of the Database
Parameters on the Parameters tab, and Number Points is an
individual field on the Parameters tab. X is defined as a regularly
spaced vector from the minimum range to maximum range that
consists of number of points.

Clever choices of ranges for X may simplify equations. For example, if
the curves were all trigonometric in nature, a range of 0 to PI/2 might
be an easier specification than –1 to 1 (the default). Then you would
merely specify sin(x) rather than sin(pi*x/2).

Typically 20 to 30 points is enough for a simple curve with no points
of inflection.

a c

b

a

b c

d

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-7 SystemBuild FuzzyLogic Block User Guide

Example 3-3 Triangular Membership Functions with Various Settings for X

1. Create a discrete SuperBlock and instantiate a new FuzzyLogic block.
Make the block ID 1.

2. On the Code tab, replace the existing membership functions with the
triangular membership following functions:

LOW TRG(X,0,0.25,0.5);

MEDIUM TRG(X,0.25,0.5,0.75);

HIGH TRG(X,0.5,0.75,1.0);

Notice that these functions contain no spaces and that they must be
terminated with a semicolon.

3. On the Parameters tab, define the Minimum and Maximum Ranges
in the Database field (columns 5 and 6, respectively) as –1 and 1.

4. Define the Number Points to be 25.

5. Click OK.

6. Call the FuzzyLogic Tool (refer to the Using the FuzzyLogic Tool
section):

uifuzzy, {blockid=1}

7. On the CLASSES and QUALIFIERS tab of the PGUI Window, click
Plot All.

A plot of the resulting curves appears in Figure 3-4.

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-8 ni.com

Figure 3-4. Plot of Triangular Membership Curves, X-range = .5

Notice that each triangle covers only one fourth of the range, since the
X range goes from [–1,1] and a triangle function (LOW) spans [0.0,0.5].

8. In the PGUI Window, click the GENERAL tab. Set the Minimum
Range value to 0. Return to the CLASSES and QUALIFIERS tab,
and click Plot All.

In Figure 3-5, note that since the X range spans [0,1], and the triangle
definitions are unchanged, each triangle spans half of the data range.

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-9 SystemBuild FuzzyLogic Block User Guide

Figure 3-5. Plot of Triangular Membership Curves, X-range = 1.0

9. Click OK to close the PGUI Window and keep the changes, or click
Cancel to exit without saving.

Using Vectors in Membership Functions
Classes also may be defined by specifying degrees of membership directly
in vectors. These functions are not designed using a variable X, but rather
by describing a row vector in Xmath syntax. The number of points in the
membership function is equivalent to the number of points in the vector.

Note The FuzzyLogic Block Dialog entry for Number Points is ignored for vector
definitions.

For example, a triangular function of eight points may be specified as:

HOT [0.0,0.1,0.2,0.3,0.4,0.3,0.2,0.1];

or equivalently, in regularly spaced vector notation:

HOT [0.0:0.1:0.4,0.3:-0.1:0.1];

or as a combination of the two:

HOT [0.0:0.1:0.4,0.3,0.2,0.1]

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-10 ni.com

Note Vectors are enclosed in [square brackets] in class definitions. To use other
delimiters, go to the operating system command line and specify,
AI_POINT_OPEN_DELIMITER ‘[‘
AI_POINT_CLOSE_DELIMITER ‘]‘
replacing ‘[‘ and ‘]’ with alternative delimiters. This change may be required with some
European keyboards.

Example 3-4 Vector Notation Example

This example uses the membership function defined in Example 3-3.

1. Call the FuzzyLogic Tool (refer to the Using the FuzzyLogic Tool
section):

uifuzzy, {blockid=1}

2. On the GENERAL tab of the PGUI Window, set Minimum Range to
–1 and Maximum Range to 1.

3. On the CLASSES and QUALIFIERS tab, define these classes:

LOW [0,1:-.09:0];

MEDIUM [0:0.1:1,0.9:0];

HIGH [0:0.1:1,0];

4. Click the Plot All button.

The results appear in Figure 3-6.

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-11 SystemBuild FuzzyLogic Block User Guide

Figure 3-6. Plot of Triangular Functions Defined in Vector Notation

Defining Qualifiers
Qualifiers have syntax rules similar to classes. The variable X must appear
in each qualifier definition, but X means the input membership function
rather than the input vector used in class definitions.

Some sample qualifiers include:

VERY X**2;

SOMEWHAT SQRT(X);

EXTREMELY X**3;

Qualifiers can appear in rules within a fuzzy conditional statement only.
Only one user-defined qualifier may be included in each statement. For
example:

TEMPERATURE IS VERY HIGH

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-12 ni.com

The idea of negation (NOT) is an intrinsic qualifier with the definition
(NOT x = 1 – x). It may be used by itself:

TEMPERATURE IS NOT HIGH

or in combination with one other qualifier:

TEMPERATURE IS NOT VERY HIGH

Creating and Editing Data Definitions
Crisp and fuzzy data definitions may be specified.

Crisp Data Declaration
Every crisp datum declaration must have four items: name, TYPE (always
CRISP), RANGE, and a list of MEMBERS (membership functions). No blank
lines are permitted in declarations. Refer to Example 3-5.

Example 3-5 Crisp Data Declaration

DATA TEMPERATURE;

TYPE CRISP;

RANGE [0,100];

MEMBERS HOT GLOBAL;

COLD TRG(X,0,0.5,1);

WARM GLOBAL;

The first three lines are straightforward:

• TEMPERATURE is the name of the datum; it conforms to the character
restrictions of letters, numbers, and the underscore.

• TYPE is CRISP. (The only other option, FUZZY, is discussed in the
Fuzzy Data Declaration section.)

• RANGE specifies the range of possible values of the data. Any values
outside this range are truncated to the nearest valid value.

The fourth item, MEMBERS, defines the membership functions for the data
TEMPERATURE.

• Using the GLOBAL keyword after the class name specifies that the
global class definition is to be used for this membership function.
Refer to the Defining Global Membership Classes section for more
information.

• Class definitions specified directly in the data definition (for example,
the values shown with COLD) are defined for that datum only. Refer to
the Using Equations to Create Membership Functions section for the
correct syntax for equations.

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-13 SystemBuild FuzzyLogic Block User Guide

Fuzzy Data Declaration
Fuzzy data declarations contain only two items—the data name and TYPE
FUZZY, as shown in Example 3-6.

Example 3-6 Fuzzy Data Declaration

DATA IS_HOT;

TYPE FUZZY;

The range of fuzzy data is [0,1] by default.

Creating Fuzzy Rule Definitions
Each rule must have four sections—name, conditional statement
(IF clause), assertion (THEN clause), and a rule weight.

Example 3-7 demonstrates a valid rule.

Example 3-7 A Valid Rule

RULE HOT_OUT;

IF (TEMPERATURE IS HIGH) AND

(HUMIDITY IS HIGH);

THEN HEATER IS LOW

AIR_CONDITIONER IS HIGH;

WEIGHT 1;

Fuzzy data, such as HUMID and UNCOMFORTABLE, also can be used in rules,
as shown in Example 3-8.

Example 3-8 Fuzzy Data in a Rule

RULE COMFORT_LEVEL;

IF (TEMPERATURE IS HOT) AND HUMID;

THEN UNCOMFORTABLE

AIR_CONDITIONER IS HIGH;

WEIGHT 1;

When editing or creating rules, keep in mind the following general
guidelines.

• Definitions may be written in upper or lower case, but are stored in
upper case.

• Every data item must be associated with an input or an output to one
or more rules, but no data item may appear in both an input and an
output.

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-14 ni.com

• Statements may end with an optional semicolon.

• Blank lines are not permitted inside rule definitions.

Linking User-Defined Methods
Each method on the Parameters tab (Connective, Implication,
Defuzzification, and Aggregation) allows you to select a user-defined
option. This section tells you how to incorporate your own algorithm for
one or more of the methods. Only one custom algorithm can be used for
each method.

To add a user-defined algorithm, complete the following steps.

1. Copy the file $SYSBLD/src/fuzusr.c from the Xmath Commands
window to your working directory.

This file contains the templates to begin the modification process:

float fuzand()

float fuzor()

void fuzimp()

float defuzz()

void fuzagr()

2. Modify the function body(s).

Do not change the function name(s); fuzzy logic is hard wired to accept
only these names. Be very careful when using functions that return
only values between 0 and 1. This is true regardless of the TRUE and
FALSE limits set by the user in the Database Parameters field.

3. Incorporate the block into SystemBuild by linking in fuzusr.c.

a. Copy the makefile file $SYSBLD/bin/makefile to the same
directory as fuzusr.c.

b. List fuzusr.c on the CSOURCES line.

c. Include the keyword -remake in your sim() call.

The new sim() executable is remade automatically when sim is
invoked.

If a user-defined function is selected in the FuzzyLogic Block Dialog,
and no user-defined function is linked in, the simulator informs the user.
A default algorithm is selected for simulation.

• Connective—Max-Min

• Implication—Mamdani

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-15 SystemBuild FuzzyLogic Block User Guide

• Defuzzification—Means of Max

• Aggregation—Arithmetic

Debugging Hints
• Assign a range of separate fuzzy inputs to the condition of each

rule—This lets you see how, by varying the degree of membership
values, the crisp outputs are affected.

• Assign a fuzzy data output to the assertion of each rule—Assign
different fuzzy outputs to each rule to see how a set of crisp inputs are
evaluated with respect to the degree of membership value in each rule’s
IF statement.

Using the FuzzyLogic Tool
The FuzzyLogic tool is a MathScript program that provides a user interface
for editing the FuzzyLogic block. The tool interface handles entries that
would otherwise be made in the Parameters tab or the Code tab of the
FuzzyLogic Block Dialog. Also, the tool provides a plotting capability not
available in the SystemBuild Editor.

To invoke the FuzzyLogic tool, from the Xmath Commands window, enter

uifuzzy, {blockid=ID}

where ID is the block number of a FuzzyLogic block instantiated in the
editor.

Notice the following:

• The FuzzyLogic tool edits a specific FuzzyLogic block in an active
editor window; the block must already be instantiated.

• The block dialog box and the FuzzyLogic tool cannot be used at the
same time.

• When editing a value or string field, you must type Return to signal
the tool to accept the entry.

• When editing rules or classes you must click the Add/Update button
to signal the tool to accept the entry.

The tool has four tabs: GENERAL, RULES, DATA, and CLASSES AND
QUALIFIERS. The tabs have common elements; each contains a selectable
item list view, editable fields, and action buttons (Add/Update and
Remove). Some tabs provide access to a simple plotting capability with the
Plot One and Plot All buttons.

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-16 ni.com

A message pane, which reports entry syntax and order errors, resides below
the tabs. The buttons OK, Cancel, and Help are at the bottom of the
window. OK saves any changes and exits the tool, while Cancel exits the
tool without saving. The Help button displays an overview of the tool.

Typically, the process of creating fuzzy logic rules starts with defining the
necessary global classes and qualifiers, followed by the data and associated
member classes. Upon termination with the save option (click OK), the tool
loads the FuzzyLogic block content and discards any unused data, classes
and qualifiers created during the editing session.

Using the General Tab
The GENERAL tab allows you to set the same values as those on the
Parameters tab in the FuzzyLogic Block Dialog. Additionally, it displays
the current number of rules, data definitions, global classes, and qualifiers.

Using the Classes and Qualifiers Tab
The GENERAL tab allows you to edit existing global classes or create new
global classes and qualifiers. The panes on the left list existing classes and
qualifiers. An asterisk (*) before a name means that the class or qualifier is
in use and cannot be removed.

To view the definition of a class or qualifier, click its name in the panes on
the left. The information is displayed in the fields on the right.

To add a new class or qualifier, complete the following steps.

1. Enter an alphanumerical name.

Do not start the name with a number.

2. Enter a definition in the appropriate field.

3. Click Add/Update.

To plot a newly defined class or qualifier, click Plot One.

To plot all global classes or qualifiers, click Plot All.

To remove a class or qualifier, complete the following steps.

1. Select the class or qualifier in the left pane.

2. Click the Remove button.

To change the plot range of all global classes created in this tab, modify the
Minimum Range and Maximum Range fields on the GENERAL tab.

Chapter 3 FuzzyLogic Block

© National Instruments Corporation 3-17 SystemBuild FuzzyLogic Block User Guide

Using the Data Tab
Input and output data is described by its attributes: the data type (crisp or
fuzzy), the associated local and global classes, the data range, and the data
channel number. Additionally, the tool displays a list of all available global
classes in the lower right corner of the DATA tab pane.

Looking at the DATA tab, a list of all existing data appears in the upper left
pane. If data is used in any rule assertion or implication expressions (If or
Then statements on the RULES tab), the prefix “input” or “output” appears
in front of the name. These prefixes denote that the input or output is in use
and cannot be removed from the list at this time.

Data names are listed as follows—input data, output data, and any unused
data. Within the input and output listings, the order of appearance is based
on the associated channel number. The unused data does not have any
channel numbers associated with them.

To add data, complete the following steps.

1. Enter a unique alphanumeric name.

2. Select the data Type.

3. If the data Type is CRISP, you must define other data attributes.
Refer to the Crisp Data and Fuzzification section of Chapter 2, Fuzzy
Logic Fundamentals, for more information.

4. When all attributes of the data are properly defined, click
Add/Update.

Data can be associated with multiple local or global class members. Use the
class editor on the DATA tab to add/remove/modify a local class member.

To add a global class member, complete the following steps.

1. Select the global class from the list (on the lower right pane).

2. Click Add/Update.

To remove a class, complete the following steps.

1. Select the class in the Member Classes list.

2. Click Remove.

Chapter 3 FuzzyLogic Block

SystemBuild FuzzyLogic Block User Guide 3-18 ni.com

Using the Rules Tab
To add a new rule, complete the following steps.

1. Enter an alphanumeric name.

2. Enter an assertion statement (IF).

3. Enter an implication statement (THEN).

4. Enter an aggregation Weight.

5. Click Add/Update.

To edit an existing rule, complete the following steps.

1. Select the rule from the Rules list on the left pane.

2. Perform the necessary modifications.

3. Click Add/Update.

To remove a rule, complete the following steps.

1. Select the rule from the Rules list on the top left pane.

2. Click Remove.

© National Instruments Corporation 4-1 SystemBuild FuzzyLogic Block User Guide

4
FuzzyLogic Block Example

The example presented in this chapter solves an intuitively simple physical
problem that requires a certain amount of mathematical sophistication
when solved by conventional mathematical control system means. While
demonstrating how to use the FuzzyLogic block by example, it also shows
how intuitively obvious the concepts of fuzzy logic solutions can be.

Introducing the Model
Load the demonstration model. In the Xmath Commands window, type:

load "$SYSBLD/examples/pendulum/pendulum.cat"

Edit the PENDULUM SuperBlock. There are two blocks in the
PENDULUM SuperBlock, the inverted Pendulum Model SuperBlock and
the fuzzy logic controller, as shown in Figure 4-1.

Chapter 4 FuzzyLogic Block Example

SystemBuild FuzzyLogic Block User Guide 4-2 ni.com

Figure 4-1. PENDULUM Model

The inverted pendulum is represented by a continuous SuperBlock with
two inputs and four outputs. The two inputs, Force from the controller and
Noise from an external input, are added together then input to the block
representing the inverted pendulum dynamics.

Two outputs from the PENDULUM SuperBlock, Angle and Delta, are crisp
data inputs to the fuzzy controller block. The fuzzy controller has one crisp
output, Force, which connects back to the PENDULUM SuperBlock. The
fuzzy controller also has seven other outputs, each a fuzzy data output for
each rule.

Chapter 4 FuzzyLogic Block Example

© National Instruments Corporation 4-3 SystemBuild FuzzyLogic Block User Guide

Generating the Rules
Open the FuzzyLogic Block Dialog. The Code tab reveals that the fuzzy
controller has seven rules, ten data variables, five global classes, and no
qualifiers. The rules were generated from intuitively reasonable rules about
the behavior of a pendulum:

IF the pole is vertical and DELTA is about 0,

THEN apply no force to the base.

IF ANGLE is a little positive/negative and DELTA is a

little negative/positive, THEN apply no force to the

base.

IF ANGLE is a little positive/negative and DELTA is a

little positive/negative, THEN apply a small

positive/negative force to the base.

IF ANGLE is positive/negative, and DELTA is small, then

move the base in the positive/negative direction.

These rules are translated to the seven fuzzy IF/THEN rules found inside
the FuzzyLogic block: NM_ZR, NS_NS, NS_PS, PM_ZR, PS_NS, PS_PS,
ZR_ZR. Each rule also has a fuzzy data output, which stores the result of
each rule conditional. This is helpful for understanding and debugging the
dynamics of the fuzzy logic controller.

Crisp data definitions are created from the rules. The inputs Angle and
Delta are defined as:

DATA ANGLE;

TYPE CRISP;

RANGE [-2,2];

MEMBERS NEG_MEDIUM GLOBAL

NEG_SMALL GLOBAL

ZERO GLOBAL

POS_SMALL GLOBAL

POS_MEDIUM GLOBAL;

DATA DELTA;

TYPE CRISP;

RANGE [-20,20];

MEMBERS NEG_SMALL GLOBAL

ZERO GLOBAL

POS_SMALL GLOBAL;

Chapter 4 FuzzyLogic Block Example

SystemBuild FuzzyLogic Block User Guide 4-4 ni.com

The output, Force, is defined as:

DATA FORCE;

TYPE CRISP;

RANGE [-700,700];

MEMBERS NEG_MEDIUM GLOBAL

NEG_SMALL GLOBAL

ZERO GLOBAL

POS_SMALL GLOBAL

POS_MEDIUM GLOBAL;

Creating Membership Functions
We now must create a set of membership functions for each linguistic
variable. We could create a different set of functions for each datum, each
sculpted to the exact meaning of the variable in relation to the crisp datum,
but this would require more memory and possibly slow down processing
times. Instead, we use one set of functions, and rely on the range scaling in
each crisp datum definition to give the appropriate meaning for each curve.
The functions are as follows.

NEG_MEDIUM SIN(PI*(X+0.5))**9;

NEG_SMALL SIN(PI*(X+0.25))**9;

ZERO SIN(PI*X)**9;

POS_SMALL SIN(PI*(X-0.25))**9;

POS_MEDIUM SIN(PI*(X-0.5))**9;

For the datum Delta, the variable NEG_SMALL has a non-zero degree of
membership in the range –20 to 0. For the data Angle, NEG_SMALL has a
non-zero degree of membership in the range –2 to 0.

One might have a different or enlarged set of rules for this problem. Fuzzy
logic requires trial and error to see how many rules are needed. Additional
rules, data, and classes require more memory and lower processing speeds.

Chapter 4 FuzzyLogic Block Example

© National Instruments Corporation 4-5 SystemBuild FuzzyLogic Block User Guide

Running the Simulation
We are now ready to run the simulation. In the Xmath Commands window,
type:

t=[0:.05:70]’;

set seed 0

in=.1*random(t);y = sim("PENDULUM", t, in);

Plot the first four channels (Position, Delta, Angle, and Delta) of the pdm y
by typing:

plot(y(1:4,:), {strip})

The Angle varies back and forth about 0°, as shown in Figure 4-2.

Figure 4-2. Plot of the Pendulum Example

Chapter 4 FuzzyLogic Block Example

SystemBuild FuzzyLogic Block User Guide 4-6 ni.com

Comparing Times to Run the Simulation
We want to compare the time needed to run the simulation using Memory,
Speed, and Compromise Optimization settings.

To compare simulation time for various optimization settings, complete the
following steps.

1. Ensure that the Optimization field of the Parameters tab on the
FuzzyLogic Block Dialog is set to Speed.

2. In the Xmath Commands window, type:

zt = clock();

y = sim("PENDULUM", t, in);

et = clock();

clock() returns 0 the first time it is called, and the elapsed time since
the last call on every subsequent call.

3. To obtain the elapsed time, type:

et?

4. Change Optimization to Memory.

5. Rerun the simulation, and display the elapsed time. The result shows
the operation takes much longer.

6. Change Optimization to Compromise.

7. Rerun the simulation, and display the elapsed time.

The output is a compromise between the first and second values.

© National Instruments Corporation A-1 SystemBuild FuzzyLogic Block User Guide

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 SystemBuild FuzzyLogic Block User Guide

Index

A
aggregation

definition, 2-4
methods, harmonic, 2-10

C
centroid defuzzification method, 2-9
compromise option, 3-3, 4-6
connective methods, 2-7

definition, 2-3
conventions used in the manual, iv
crisp datum, 2-4

D
defuzzification

definition, 2-3
methods, 2-9

centroid, 2-9
means of maximum, 2-9

diagnostic tools (NI resources), A-1
documentation

conventions used in the manual, iv
NI resources, A-1

drivers (NI resources), A-1

E
examples (NI resources), A-1

F
fuzzification, 2-2, 2-3, 2-5
fuzzy

conditional, 2-5
data type, 3-12, 3-13

logic
definition, 2-1
design parameters and issues, 2-5

FuzzyLogic
block

debugging, 3-15
edit with UI tool, 3-15
example, 4-1
fuzusr.c file, 3-14
introduction, 1-1
memory option, 3-2
speed option, 3-3
trapezoidal function, 3-6
triangular function, 3-6

tool, 3-15

H
harmonic mean, 2-10
help, technical support, A-1

I
implication

definition, 2-8
methods, 2-8

Larsen, 2-8
Mamdani, 2-8

problem description, 2-3
instrument drivers (NI resources), A-1

K
KnowledgeBase, A-1

L
Larsen implication method, 2-8

Index

SystemBuild FuzzyLogic Block User Guide I-2 ni.com

M
Mamdani implication method, 2-8
means of maximum defuzzification

method, 2-9
memory

considerations, 2-12
option, 4-6

N
National Instruments support and

services, A-1

O
optimization preference, 4-6

P
parallelism, 2-13
plot data with UI tool, 3-15
programming examples (NI resources), A-1

Q
qualifiers, effects on fuzzification, 2-5

R
rule guidelines, 3-13

S
software (NI resources), A-1
speed

considerations, 2-12
option, 4-6

support, technical, A-1

T
technical support, A-1
training and certification (NI resources), A-1
troubleshooting (NI resources), A-1

W
Web resources, A-1

	SystemBuild FuzzyLogic Block User Guide
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Chapter 2 Fuzzy Logic Fundamentals
	Preliminary Example
	Figure 2-1. Inverted Pendulum Problem

	When Fuzzy Logic is Appropriate
	Methods and Design Issues
	Crisp Data and Fuzzification
	Figure 2-2. Membership Function for Datum Angle
	Figure 2-3. Fuzzification of Angle is Medium
	Qualifiers
	Figure 2-4. Membership Function with Qualifiers Including NOT
	Fuzzy Data

	Connective Methods
	Table 2-1. MAX-MIN versus Bayesian Connective Methods

	Implication Methods
	Table 2-2. Mamdani versus Larsen Implication Methods
	Figure 2-5. Implication Example

	Defuzzification Methods
	Figure 2-6. Defuzzification Example

	Aggregation Method
	Overview and Additional Design Issues
	Figure 2-7. Pendulum Example Fuzzy Rules
	Speed versus Memory Preferences
	Parallelism

	Chapter 3 FuzzyLogic Block
	Using the Parameters Tab
	Using the Code Tab
	Figure 3-1. Default Code Tab Contents
	Declaring Inputs and Outputs
	Defining Global Membership Classes
	Using Equations to Create Membership Functions
	Figure 3-2. Triangular Function TRG(x,a,b,c)
	Figure 3-3. Trapezoidal Function QUAD(x,a,b,c,d)
	Figure 3-4. Plot of Triangular Membership Curves, X-range = .5
	Figure 3-5. Plot of Triangular Membership Curves, X-range = 1.0

	Using Vectors in Membership Functions
	Figure 3-6. Plot of Triangular Functions Defined in Vector Notation

	Defining Qualifiers
	Creating and Editing Data Definitions
	Crisp Data Declaration
	Fuzzy Data Declaration

	Creating Fuzzy Rule Definitions

	Linking User-Defined Methods
	Using the FuzzyLogic Tool
	Using the General Tab
	Using the Classes and Qualifiers Tab
	Using the Data Tab
	Using the Rules Tab

	Chapter 4 FuzzyLogic Block Example
	Introducing the Model
	Figure 4-1. PENDULUM Model

	Generating the Rules
	Creating Membership Functions
	Running the Simulation
	Figure 4-2. Plot of the Pendulum Example

	Comparing Times to Run the Simulation

	Appendix A Technical Support and Professional Services
	Index
	A-L
	M-W

